Maximum Information Transfer in Feedforward Neural Networks
نویسندگان
چکیده
The principle of maximum information preservation has been successfully used to derive learning algorithms for self-organizing neural networks. In this paper, we state and apply the corresponding principle for supervised networks: the principle of minimum information loss. We do not propose a new learning algorithm, but rather a pruning algorithm which works to achieve minimum information loss in the face of noise at the input. We also explore the implications of adding noise to the problem of maximum information preservation with nonlinear neurons.
منابع مشابه
Using Neural Networks and Genetic Algorithms for Modelling and Multi-objective Optimal Heat Exchange through a Tube Bank
In this study, by using a multi-objective optimization technique, the optimal design points of forced convective heat transfer in tubular arrangements were predicted upon the size, pitch and geometric configurations of a tube bank. In this way, the main concern of the study is focused on calculating the most favorable geometric characters which may gain to a maximum heat exchange as well as a m...
متن کاملApplication of Two Methods of Artificial Neural Network MLP, RBF for Estimation of Wind of Sediments (Case Study: Korsya of Darab Plain)
The lack of sediment gauging stations in the process of wind erosion, caused of estimate of sediment be process of necessary and important. Artificial neural networks can be used as an efficient and effective of tool to estimate and simulate sediments. In this paper two model multi-layer perceptron neural networks and radial neural network was used to estimate the amount of sediment in Korsya o...
متن کاملبررسی کارایی روشهای مختلف هوش مصنوعی و روش آماری در برآورد میزان رواناب (مطالعه موردی: حوزه شهید نوری کاخک گناباد)
Rainfall-runoff models are used in the field of hydrology and runoff estimation for many years, but despite existing numerous models, the regular release of new models shows that there is still not a model that can provide sophisticated estimations with high accuracy and performance. In order to achieve the best results, modeling and identification of factors affecting the output of the model i...
متن کاملMutual Information and Information Gating in Synfire Chains
Coherent neuronal activity is believed to underlie the transfer and processing of information in the brain. Coherent activity in the form of synchronous firing and oscillations has been measured in many brain regions and has been correlated with enhanced feature processing and other sensory and cognitive functions. In the theoretical context, synfire chains and the transfer of transient activit...
متن کاملNeural networks with a self-refreshing memory: knowledge transfer in sequential learning tasks without catastrophic forgetting
We explore a dual-network architecture with self-refreshing memory (Ans and Rousset 1997) which overcomes catastrophic forgetting in sequential learning tasks. Its principle is that new knowledge is learned along with an internally generated activity re ecting the network history. What mainly distinguishes this model from others using pseudorehearsal in feedforward multilayer networks is a rev...
متن کامل